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Abstract—Packet Classification is an enabling technique for the future 
Internet by classifying incoming packets into forwarding classes to 
fulfill different service requirements. It is necessary for IP routers to 
provide network security and differentiated services. Recursive Flow 
Classification (RFC) is a notable high-speed scheme for packet 
classification. However, it may incur high memory consumption in 
generating the pre-computed cross-product tables. In this paper, we 
propose a new scheme to reduce the memory consumption by 
partitioning a rule database into several subsets. The rules of each 
subset are stored in an independent RFC data structure to significantly 
alleviate overall memory consumption. We also present several 
refinements for these RFC data structures to significantly improve the 
search speed. The experimental results show that our scheme 
dramatically improves the storage performance of RFC.  

Keywords-packet classification; packet forwarding; firewalls; QoS 

I. INTRODUCTION 
Packet classification identifies flows among a stream of 

packets that arrive at routers. It is an enabling technology for the 
future Internet to support access control, quality of service 
guarantees and differentiated services. Packet classification is 
essentially a problem of multidimensional range matching, which 
compares the header fields of incoming packets against a set of 
pre-defined rules. The header fields include source IP prefix, 
destination IP prefix, source port range, destination port range, 
and protocol number. Each rule indicates an action for processing 
the matching packets and a priority value to indicate its 
precedence among the matching rules. For an incoming packet, 
packet classification yields the matching rule with the highest 
priority. The performance of a packet classification algorithm is 
measured by its memory consumption and number of memory 
accesses to accomplish a classification.    

Currently, packet classification algorithms have different 
tradeoffs between storage and speed performance. For example, 
the algorithms based on hash tables have superior space 
performance, but their speed performance cannot be guaranteed 
[5][6]. Decision-tree-based algorithms use a decision tree to 
divide rules into multiple linear-search groups [7][8]. The speed 
and the storage performance would vary according to the 
characteristics of rule databases. EffiCuts uses multiple decision 
trees to control memory consumption, but also degrades the 
speed performance [9]. Ternary content addressable memories 
(TCAMs) have been widely used to lookup rules. However, 
TCAMs cannot store ranges; thus, range-to-prefix transformation 
is required to degrade storage efficiency [11][12]. RFC [2] is a 
notable high-performance algorithm based on cross-producting. It 
uses multiple iterations of cross-producting to classify packets. 
While RFC outperforms the existing cross-producting algorithms 
[2][3][4] in search performance, it is not feasible for large rule 
databases since high memory consumption in generating the 
cross-product tables is incurred.  

In this paper, we propose a new packet classification scheme 
based on RFC. Our scheme partitions a rule database into several 
subsets where the rules of each subset are stored in a RFC data 
structure. By controlling the number of rules in a subset, our 
scheme can avoid generating huge cross-product tables. 
Consequently, RFC is executed in a recursive fashion to 
determine which subsets should be accessed and which rules in a 
subset are matched. We also present several refinements to 
improve both storage and speed performance. The experimental 
results show that the new scheme significantly improves the 
feasibility of RFC for large rule databases while maintaining the 
superior speed performance.  

The rest of paper is organized as follows. Section II and III 
presents the proposed scheme and refinements, respectively. The 
experimental results are show in Section IV; a summary is given 
in Section V. 

II. PROPOSED SCHEME 
We aim at improving the storage efficiency of RFC by 

employing multiple RFC instances. First, we partition a rule 
database into several subsets. The rules of each subset are stored 
in an independent RFC data structure. Each subset is then 
represented by an index rule and each index rule points to the 
corresponding RFC data structure. Thus, if we partition the 
database into k subsets, then k index rules are created. These 
index rules are stored in another RFC data structure (index RFC). 
With the index RFC, we can determine which subsets an 
incoming packet matches. Next, the corresponding RFC data 
structures are accessed to determine the matching rules.  

We describe the reasoning for partitioning a rule database by 
using an example. Table I is a rule database with six two-field 
rules. In the source address (SA) field, there are five 
combinations: 0* (R3,R6) , 010* (R3,R4,R6), 1* (R2,R6) , 1100 
(R1,R2,R6), and 1110 (R2,R5,R6),where the identifiers shown in 
the parenthesis are the matching rules for the corresponding 
prefix. In the destination address (DA) field, there are six 
combinations: * (R5), 110* (R5,R6), 1011 (R1,R5), 0* (R4,R5), 
010* (R2,R4,R5), and 00* (R3,R5). As a result, there are 
30(=6*5) entries after cross-producting both fields. The number 
of cross-product entries can be reduced by partitioning a rule 
database. Fig. 1 illustrates these rules geometrically. These rules 
are divided into three subsets, (R1,R5,R6), (R2,R5), and (R3,R4). 
The number of cross-product entries for each subset is 9(=3*3), 
4(=2*2), and 4(=2*2). As a result, the total number of cross-
product entries is reduced to 17. As compared with the original 
cross-product table, database partitioning can effectively reduce 
the cross-product entries. Accordingly, we improve the storage 
efficiency of RFC by using database partitioning. 
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TABLE I.  A TWO-FIELD RULE DATABASE. 

 SA DA  SA DA 
R1 1100 1011 R4 010* 0* 
R2 1* 010* R5 1110 * 
R3 0* 00* R6 * 110* 

 

 
Figure 1. Geometric illustration of rules in Table I. 

An effective partitioning algorithm should meet several 
requirements. First, the rules which are geometrically close to 
each other should be categorized in the same subset. This 
requirement can avoid the search procedure to access all subsets. 
Second, each rule should reside in exact one subset. A less 
efficient partitioning technique may incur replicated rules to 
result in extra storage. Third, the number of rule subsets should 
be adjustable to accommodate different rule databases. In the 
following, we investigate the current techniques for partitioning a 
rule database. 

The idea of tuple space divides a rule database into tuples 
based on the number of bits specified in each field. Each tuple 
corresponds to a prefix-length combination of all inspected fields, 
and the resulting set of tuples is called tuple space [1]. For 
example, a five-dimensional tuple, (8,16,7,0,8), collects the rules 
whose first field is an 8-bit prefix and the second field is a 16-bit 
prefix and so on. Since each rule has only one prefix-length 
combination, tuple space does not incur any rule replication. 
However, a prefix-length combination does not imply any 
geometric relations, tuple space cannot meet our first 
requirement. It is also difficult to adjusting the number of tuples 
due to the high cost of prefix expansion. A similar idea of tuple 
space is proposed by using the nested-level tuple, where the 
length of each field is defined as the number of nested levels for 
the corresponding prefix. Although the number of nested-level 
tuples is significantly less than the number of tuples, the first 
requirement is still not supported. A greedy approach is proposed 
to reduce the number of nested level tuples by using the 
technique of cross-producting, but the problem of rule replication 
remains. Nested-level tuples also do not support updates since 
inserting a rule with a new prefix can change the nested levels of 
all rules.  

The decision-tree algorithms can divide a database into 
subsets by using field attributes of a rule. When the attribute used 
for partitioning a database is the field values, decision tree 
provides a geometrical approach that the rules in the same subset 
are close to each other. As a result, only one subset of a decision 
tree is accessed while performing packet classification. The 
number of subsets can be controlled by adjusting the number of 
rules in a leaf node. However, rule replication is a persistent 
problem of a decision tree. Since wildcard specification is 

common in a rule database, a geometrical approach to partition a 
rule database can only minimize the replicated rules, rather than 
avoid rule replication. In the previous work, several approaches 
to minimizing replicated rules are proposed [8]. Several 
algorithms use multiple decision trees to improve the efficiency 
of rule partitioning [9]. The other algorithms exploit different 
attributes for partitioning a rule set. None of these approaches can 
completely avoid the problem of rule replication with a 
reasonable cost.  

As compared with tuple-based partitioning approaches, rule 
replication is only one problem to overcome for using decision 
tree to partition a rule database. We use an on-demand approach 
to avoid the problem of rule replication. Our approach first 
generates a balanced binary decision tree where each internal 
node divides the associated rules into two subsets. In the 
procedure of constructing a decision tree, any replicated rules are 
removed. All rules which are removed from the first decision tree 
are then stored in the second decision tree. The second decision 
tree is then constructed based on the above procedure. Any 
replicated rules in the second decision tree are then moved to the 
third decision tree, and so on. After generating all decision trees, 
the rules in a leaf node are inserted into an RFC data structure. 
Thus, the number of RFC data structures is equal to the total 
number of leaf nodes in all decision trees. 

The detailed procedure of rule partitioning is described below. 
We first define a bucket size to limit the number of rules stored in 
an RFC data structure. All rules are associated with the root node 
of the first decision tree. If the number of rules is larger than the 
bucket size, then the rules are divided into two subsets. To 
partition a rule set, we select a field which can effectively 
distinguish these rules. We calculate the number of distinct 
prefixes of each field for the rule set and choose the field with the 
largest number for rule partitioning. For the selected field, we 
further determine an address point which can equally divide the 
rule set into two parts. We calculate the number of rules whose 
end points of the selected field are less than or equal to a given 
address point and number of rules whose starting points of the 
selected field are larger than the given address point for each end 
point. The end point whose numbers are the closest is selected. 
With the selected address point, we can divide the rule set into 
three subsets: the rules whose ranges are lower than the selected 
address point, the rules whose ranges are higher than the selected 
address point, and the uncategorized rules whose ranges are 
across the selected address point. The first two sets can be further 
divided until each generated subset has less number of rules than 
the bucket size by repeating the above steps. All uncategorized 
rules in the decision tree are inserted into the root node of the 
next decision tree for further partitioning.  

We illustrate the above procedure by using an example with 
seventeen five-field rules, as listed in Table II. We set the bucket 
size to four. In the first iteration of rule partitioning, there are the 
most distinct prefixes in source address field; thus, we select this 
field to partition the rules into three subsets, where each subset 
corresponds to a node of the tree. As shown in Fig. 2, the left 
child of the root node stores the rules whose source address field 
is lower than the selected address, and the right child of the root 
node stores the rules with larger source address field. The middle 
child of root node stores the uncategorized rules. Because both 
left and right child nodes have more than four rules, they should 
be further partitioned to generate smaller subsets. All the 
uncategorized rules in the decision tree (including R15, R16, 
R12, and R13) are removed to the second decision tree. Due to 
the size of the subset corresponding to the root node is not larger 
than the threshold, the second decision tree only has one node. 
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TABLE II.  THE FIVE FIELD RULE-DATABASE. 

 Source address Destination address Source port  Destination port Protocol 
R0 100.100.198.45/32 128.17.88.0/24 [0:1024] [80:80] 0x06/0xFF
R1 69.250.70.0/32 255.255.255.255/32 [151:151] [81:81] 0x06/0xFF
R2 128.23.128.0/24 128.17.88.0/23 [80:80] [150:160] 0x07/0xFF
R3 32.9.136.0/25 200.16.14.0/24 [79:~80] [80:80] 0x01/0xFF
R4 88.79.0.0/13 192.192.69.69/32 [514:514] [36:136] 0x06/0xFF
R5 200.55.0.0/13 128.17.88.0/24 [2435:2436] [55444:55444] 0x03/0xFF
R6 64.63.0.0/16 128.17.88.0/24 [0:1024] [0:65535] 0x00/0x00
R7 128.128.0.0/16 0.0.255.255/32 [5000:6000] 100 ~ 100 0x07/0xFF
R8 100.100.0.0/16 79.0.0.0/8 [514:514] [120:120] 0x06/0xFF
R9 5.64.0.0/10 32.0.128.0/10 [35543:65535] [83:83] 0x00/0x00
R10 224.145.0.0/9 0.0.0.8/32 [80:80] [0:1024] 0x03/

0xFF 
R11 130.87.0.0/10 64.64.90.0/18 [3680:6887] [0:1024] 0x03/0xFF
R12 128.34.0.0/24 0.0.0.0/0 [1025:1025] [1221:1228] 0x03/0xFF
R13 254.80.0.0/16 0.0.0.0/0 [1025:1025] [55444:55666] 0x08/0xFF
R14 254.80.0.0/16 180.37.0.0/16 [17:30] [55222:55333] 0x08/0xFF
R15 0.0.0.0/0 128.128.64.0/24 [98:98] [135:135] 0x00/0xFF
R16 0.0.0.0/0 0.0.0.0/0 [0:65535] [0:65535] 0x00/0x00

 

 

Figure 2 The decision trees for the example in Table 2. 

After partitioning a rule-database into several subsets, the 
rules of a subset is stored in an RFC data structure and use an 
index rule to represent the space of a subset. Each range of the 
index rule starts from the smallest starting point to the largest end 
point of the corresponding field of all rules in the subset. 
Therefore, if we partition a rule-database into k subsets, we create 
k index rules. Table III lists the index rules and their 
corresponding ranges in each field for the previous example in 
Table II. After creating the index rules for all subsets, we use an 
RFC data structure to store these index rules, called index RFC.  

For each RFC data structure, five filter fields are split into 
seven chunks, including six 16-bit chunks and one 8-bit chunk in 
the first phase. For each chunk, a 2W-entry index array is 
constructed for accessing the equivalence class ID (eqID) 
corresponding to the value of a packet header field, where w 
denotes the chunk size. Each eqID is associated with a class 
bitmap to indicate the rules matching the chunk equivalence set. 
Each class bitmap of an eqID is different. Two or three chunks 
are combined to generate a chunk in the next phase by cross-
producting their eqIDs. The class bitmap of a new chunk is equal 
to the intersection of the class bitmaps of the merged eqIDs. Each 
distinct class bitmap represents an equivalence set in the new 
phase. Each equivalence set is then assigned an eqID. The new 
eqIDs are stored in an index array whose size is equal to the 
multiplication of the number of merged eqIDs. The procedure 
proceeds until all chunks are merged. For an incoming packet, the 
search procedure in an RFC data structure starts by splitting the 
packet header into seven chunks. The value of each chunk is used 
to access the eqID in the index array. If there is any subsequent 
phase, then the search procedure uses the combination of the 
fetched eqID to generate the index of the next phase. As the 

procedure traverses to the last phase and fetches the eqID, the 
class bitmap corresponding to the eqID is accessed to determine 
the matching rules. 

For an incoming packet, the complete search procedure starts 
by traversing the index RFC data structure to find the matching 
index rules. Then, the search procedure proceeds to search the 
subsets of the matching index rules by accessing the 
corresponding RFC data structures. The framework of our 
algorithm consists of six RFC data structures, five for the resulted 
subsets and one for the index rules. Table IV shows the cross-
producting table entries in each phase for the original RFC and 
our algorithm. In this example, we reduce 63% entries of the 
original RFC. 

TABLE III. THE INDEX RULES FOR THE RULES IN TABLE II. 

 Source address Destination 
address Source port Destination 

port Protocol 

Index 
Rule 0 

[5.64.0.0: 
64.63.255.255] 

[32.0.0.0: 
200.16.14.255] [0:65535] [0:65535] [0:255] 

Index 
Rule 1 

[69.250.70.0: 
100.100.255.255] 

[79.0.0.0: 
255.255.99.191] [36:136] [0:1024] [6:6] 

Index 
Rule 2 

[128.128.0.0: 
225.16.255.255] 

[0.0.0.8: 
64.64.153.255] [80:6887] [0:1024] [3:7] 

Index 
Rule 3 

[128.23.128.0: 
254.80.255.255] 

[128.17.88.0: 
180.37.255.255] [17:2436] [150:55444] [3:8] 

Index 
Rule 4 

[0.0.0.0: 
255.255.255.255] 

[0.0.0.0: 
255.255.255.255] [0:65535] [0:65535] [0:255] 

TABLE IV.  THE CROSS-PRODUCTING TABLE ENTRIES IN EACH PHASE FOR THE 
ORIGINAL RFC AND OUR ALGORITHM. 

 

III. REFINEMENTS 
In this section, we present three techniques to further improve 

both speed and storage performance.  

A. Merging Small Subsets 
While partitioning a rule database, small subsets could be 

generated. These small subsets would result in less efficient RFC 
data structure. Extra memory accesses to these data structures are 
also incurred.  To avoid generating small rule subsets, we merge 
the subsets whose numbers of rules are smaller than a threshold. 
These rules of the merged groups are thus stored in the same RFC 
data structure. 

B. Merging the First Phases of Different RFCs 
As mentioned above, we need k+1 RFC data structures for a 

database partitioned into k groups. Since each of RFC data 
structure is traversed independently, we need 7*(k+1) memory 
accesses to retrieve eqIDs in the index arrays of the first phase. 
To reduce the number of memory accesses, we merge the index 
arrays of the same chunk from different RFC data structures, 
where each entry in the new array has k+1 fields. Each field maps 
to one eqID of different RFCs. Accordingly, we can fetch the 
eqIDs of the same chunk in different RFC data structures with 
one memory access. The number of memory accesses is thus 
reduced from 7*(k+1) to seven for the first phase of all RFCs.  

The first phase of each RFC data structure stores eqIDs for six 
16-bit chunks and one 8-bit chunk. The lookup table of each 16-
bit chunk is a 216-entry index array and that for the 8-bit chunk is 
a 28-entry index array. If we partition a database into k subsets, 

SA 

SA DA 
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we will need 6 216 (k+1)+28 (k+1) array entries in the first 
phase. In order to reduce the memory consumption, we replace 
the index array with a binary-search array for the first-phase 
eqIDs. For each index array, the eqIDs stored in contiguous 
entries could be the same. We can merge them into an interval, 
which starts from the first entry to the last entry with the same 
eqID. In this way, we can transform a 2w-entry index array into an 
n-interval array, which can be binary searched. This approach can 
reduce memory consumption in the first phase. We note that we 
have merged the first phase of k+1 RFC data structures; therefore, 
the prerequisite for merging contiguous entries into one interval 
is modified from “with the same eqID” to “with the same (k+1) 
eqIDs”. 

IV. EXPERIMENTAL RESULTS 
In this section, we use both real and synthetic filter databases 

to evaluate the performance of the proposed scheme. We use 
three types rule sets in our experiment: access control list (ACL), 
firewall (FW) and IP chains (IPC). All the databases are publicly 
available in [14]. We also compare the proposed scheme with 
several existing schemes. 

The experimental result consist of three parts, the first part 
shows the tradeoff between speed and storage performance with 
different subset size. The second part demonstrates the 
performance improvement based on various threshold values for 
subset merging. The last part is a performance study that 
compares our scheme with the existing schemes. 

A. Different Subset Size 
For the first part, the number of rules in a subset is determined 

by using a divisor. With the defined divisor d1, the subset size is 
equal to the total number of rules divided by d1. A rule set is 
partitioned until the number of rules in each subset is less than the 
threshold value. We use three divisors, 4, 8, and 16, in the 
following evaluation and choose the one with the best 
performance. 

Fig. 3 shows the memory requirement and the numbers of 
memory accesses in the worst case for three different types of 
databases with three different subset sizes. As shown in Fig. 3(a), 
the memory requirements degrade gradually along with a smaller 
subset size and a small group size usually leads to low memory 
requirement for cross-producting tables. However, Fig. 3(b) also 
shows that with more subsets generated, more memory accesses 
are needed to accomplish a classification. This is because an 
incoming packet may match multiple index rules in the index 
RFC and the corresponding RFC data structures must be 
accessed. After comparing these group sizes, we set the group 
divisor d1 to 8 since it can better leverage the storage and speed 
performance. The subset size is thus equal to the number of rules 
divided by 8. 

After partitioning a database into several subsets, the subsets 
with few rules may decrease the overall search performance since 
their RFC data structures store relatively few rules. In addition, 
extra memory accesses might be incurred if an incoming packet 
matches these subsets.  

B. Different Threshold Values for Subset Merging 
In the second part, we set a threshold to improve the 

performance by merging the small subsets. The merge threshold 
is also determined by using a divisor d2, where the merge 
threshold is equal to the subset size divided by d2. The subsets are 
merged if their sizes are smaller than the merge threshold. We 
use three divisor values, 2, 3, and 4, in the following evaluation 
and choose the one with the best performance. 

 
Fig. 4 shows the memory requirement and the number of 

memory accesses in the worst case for three types of databases 
with three different thresholds for subsets merging. Fig. 4(a) 
shows that a large threshold may incur more memory 
requirements since more subsets are merged to result in larger 
cross-producting tables in RFC. Fig. 4(b) shows that a small 
merge threshold may incur more memory accesses for several 
databases because the number of RFC data structures cannot be 
effectively reduced. As a result, an incoming packet may match 
more subsets to lead to more memory accesses in the search 
procedure. 

We further compare the performance of our scheme with and 
without subset merging by setting the divisor d2 to 3. Fig.5(a) 
shows that the memory requirements increase slightly with subset 
merging since an RFC data structure storing more rules usually 
results in more cross-producting entries. Fig. 5(b) shows that 
subset merging can reduce the number of memory accesses. 
Although the tradeoff between storage and speed performance is 
present, the speed improvement is preferable since our algorithm 
has significantly reduced memory requirement of RFC. 

C. Comparative analysis 
In the last part, we compare the performance of our optimized 
scheme with four existing schemes, including RFC [2], HSM [3], 
Hypercuts [8] and ISET [13]. We also use three types of rule sets 
in the comparisons, as shown in Fig. 6~8. Some results cannot be 
generated because the programs for building data structures ran 

Figure 3(a). Storage performance for three databases in three kinds of 
thresholds.  

Figure 3(b). Speed performance for three databases in three kinds of thresholds.
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Figure 4(a).  Storage performance for three databases in three merge thresholds.  

 

Figure 4(b).  Speed performance for three databases in three merge thresholds.  

 

Figure 5(a). Storage performance of our scheme with and without group 
merging. 

 

Figure 5(b). Speed performance of our scheme with and without group merging.

 
Figure 6(a). Storage performances of five schemes with ACL1 databases. 

 
Figure 6(b). Speed performance of five schemes with ACL1 databases. 

 
out of memory. Fig. 6(a), 7(a) and 8(a) show the comparisons of 
memory requirements with five schemes. Our scheme greatly 
improves the storage performance of both RFC and HSM since 
they use similar data structures. The memory requirement of our 
proposed scheme is larger than that of ISET since ISET heavily 
relies on linear search in their data significantly worse than our 
scheme. However, the speed performance of ISET is also 
significantly worse than our scheme. The results of Hypercuts 
vary for different databases. While Hypercuts performs well for 
ACL, its performance degrades severely for FW and IPC 
databases. These databases result in heavy filter replication 
structures. As a result, both storage and speed performance is 

worsened simultaneously. For FW and IPC databases, our 
scheme outperforms Hypercuts for both speed and storage 
performance. In summary, our scheme shows the best feasibility 
among these schemes. Although it may not be the best scheme 
for a single performance metric, it always provides consistent 
throughput and avoids the worst case performance. 

V. CONCLUSIONS 
Packet classification is an important technique for the future 
Internet. In this paper, we proposed an effective algorithm based 
on RFC. RFC can classifies packets within few memory 
accesses. However, the main drawback of RFC is that it may

1

10

100

1000

10000

100000

M
em

or
y 

(K
B

)
(8,2) (8,3) (8,4)

0

5

10

15

20

25

30

35

40

45

N
um

be
r 

of
 M

em
or

y 
A

cc
es

se
s

(8,2) (8,3) (8,4)

1

10

100

1000

10000

100000

M
em

or
y 

(K
B

)

without refinement
with merging refinement

0

5

10

15

20

25

30

35

40

45

N
um

be
r 

of
 M

em
or

y 
A

cc
es

se
s without refinement

with merging refinement

1

10

100

1000

10000

100000

ACL1 ACL1_100 ACL1_1K ACL1_5K ACL1_10K

M
em

or
y 

(K
B

)

ISET HyperCuts RFC HSM Our Scheme

0

20

40

60

80

100

120

140

ACL1_REAL ACL1_100 ACL1_1K ACL1_5K ACL1_10K

N
um

be
r 

of
 M

em
or

y 
A

cc
es

se
s

ISET HyperCuts RFC HSM Our Scheme

752



 

 
Figure 7(a). Storage performances of five schemes with FW1 database. 

 
Figure 7(b). Speed performance of five schemes with FW1 databases. 

 

 
Figure 8(a). Storage performances for five schemes with IPC1 database. 

 
Figure 8(b). Speed performances for five schemes with IPC1 database. 

 
incur high memory consumption in generating the cross-product 
tables. Owing to this drawback, RFC is not feasible for large 
databases. To improve the storage performance, we design a 
algorithm to partition the rule database into several subsets 
geometrically. Each rule in a subset is stored in an RFC data 
structure and each subset is represented by an index rule. All 
index rules are stored in an index RFC for pointing to the 
corresponding RFC data structure. By traversing these RFC data 
structures recursively, the highest priority matching rule for an 
incoming packet can be yielded. We further merge the index 
arrays of the same chunk in the first phase to reduce memory 
accesses. We also transform the index arrays for binary searches 
to improve the storage performance. We use three types of rule 
sets to evaluate the performance, including access control list, 
firewall and IP chains. The results show that our scheme can 
significantly reduce the memory requirement as compared with 
RFC. It also leverages the performance of storage and speed to 
avoid extreme cases of the existing schemes. 
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