
Packet Classification Using Multi-Iteration RFC

Chun-Hui Tsai, Hung-Mao Chu, Pi-Chung Wang
Department of Computer Science and Engineering

National Chung Hsing University
Taichung 402, Taiwan

hwei519@gmail.com, chuhungmao@gmail.com, pcwang@nchu.edu.tw

Abstract—Packet Classification is an enabling technique for the future
Internet by classifying incoming packets into forwarding classes to
fulfill different service requirements. It is necessary for IP routers to
provide network security and differentiated services. Recursive Flow
Classification (RFC) is a notable high-speed scheme for packet
classification. However, it may incur high memory consumption in
generating the pre-computed cross-product tables. In this paper, we
propose a new scheme to reduce the memory consumption by
partitioning a rule database into several subsets. The rules of each
subset are stored in an independent RFC data structure to significantly
alleviate overall memory consumption. We also present several
refinements for these RFC data structures to significantly improve the
search speed. The experimental results show that our scheme
dramatically improves the storage performance of RFC.

Keywords-packet classification; packet forwarding; firewalls; QoS

I. INTRODUCTION
Packet classification identifies flows among a stream of

packets that arrive at routers. It is an enabling technology for the
future Internet to support access control, quality of service
guarantees and differentiated services. Packet classification is
essentially a problem of multidimensional range matching, which
compares the header fields of incoming packets against a set of
pre-defined rules. The header fields include source IP prefix,
destination IP prefix, source port range, destination port range,
and protocol number. Each rule indicates an action for processing
the matching packets and a priority value to indicate its
precedence among the matching rules. For an incoming packet,
packet classification yields the matching rule with the highest
priority. The performance of a packet classification algorithm is
measured by its memory consumption and number of memory
accesses to accomplish a classification.

Currently, packet classification algorithms have different
tradeoffs between storage and speed performance. For example,
the algorithms based on hash tables have superior space
performance, but their speed performance cannot be guaranteed
[5][6]. Decision-tree-based algorithms use a decision tree to
divide rules into multiple linear-search groups [7][8]. The speed
and the storage performance would vary according to the
characteristics of rule databases. EffiCuts uses multiple decision
trees to control memory consumption, but also degrades the
speed performance [9]. Ternary content addressable memories
(TCAMs) have been widely used to lookup rules. However,
TCAMs cannot store ranges; thus, range-to-prefix transformation
is required to degrade storage efficiency [11][12]. RFC [2] is a
notable high-performance algorithm based on cross-producting. It
uses multiple iterations of cross-producting to classify packets.
While RFC outperforms the existing cross-producting algorithms
[2][3][4] in search performance, it is not feasible for large rule
databases since high memory consumption in generating the
cross-product tables is incurred.

In this paper, we propose a new packet classification scheme
based on RFC. Our scheme partitions a rule database into several
subsets where the rules of each subset are stored in a RFC data
structure. By controlling the number of rules in a subset, our
scheme can avoid generating huge cross-product tables.
Consequently, RFC is executed in a recursive fashion to
determine which subsets should be accessed and which rules in a
subset are matched. We also present several refinements to
improve both storage and speed performance. The experimental
results show that the new scheme significantly improves the
feasibility of RFC for large rule databases while maintaining the
superior speed performance.

The rest of paper is organized as follows. Section II and III
presents the proposed scheme and refinements, respectively. The
experimental results are show in Section IV; a summary is given
in Section V.

II. PROPOSED SCHEME
We aim at improving the storage efficiency of RFC by

employing multiple RFC instances. First, we partition a rule
database into several subsets. The rules of each subset are stored
in an independent RFC data structure. Each subset is then
represented by an index rule and each index rule points to the
corresponding RFC data structure. Thus, if we partition the
database into k subsets, then k index rules are created. These
index rules are stored in another RFC data structure (index RFC).
With the index RFC, we can determine which subsets an
incoming packet matches. Next, the corresponding RFC data
structures are accessed to determine the matching rules.

We describe the reasoning for partitioning a rule database by
using an example. Table I is a rule database with six two-field
rules. In the source address (SA) field, there are five
combinations: 0* (R3,R6) , 010* (R3,R4,R6), 1* (R2,R6) , 1100
(R1,R2,R6), and 1110 (R2,R5,R6),where the identifiers shown in
the parenthesis are the matching rules for the corresponding
prefix. In the destination address (DA) field, there are six
combinations: * (R5), 110* (R5,R6), 1011 (R1,R5), 0* (R4,R5),
010* (R2,R4,R5), and 00* (R3,R5). As a result, there are
30(=6*5) entries after cross-producting both fields. The number
of cross-product entries can be reduced by partitioning a rule
database. Fig. 1 illustrates these rules geometrically. These rules
are divided into three subsets, (R1,R5,R6), (R2,R5), and (R3,R4).
The number of cross-product entries for each subset is 9(=3*3),
4(=2*2), and 4(=2*2). As a result, the total number of cross-
product entries is reduced to 17. As compared with the original
cross-product table, database partitioning can effectively reduce
the cross-product entries. Accordingly, we improve the storage
efficiency of RFC by using database partitioning.

2013 IEEE 37th Annual Computer Software and Applications Conference Workshops

978-0-7695-4987-3/13 $26.00 © 2013 IEEE

DOI 10.1109/COMPSACW.2013.87

748

TABLE I. A TWO-FIELD RULE DATABASE.

 SA DA SA DA
R1 1100 1011 R4 010* 0*
R2 1* 010* R5 1110 *
R3 0* 00* R6 * 110*

Figure 1. Geometric illustration of rules in Table I.

An effective partitioning algorithm should meet several
requirements. First, the rules which are geometrically close to
each other should be categorized in the same subset. This
requirement can avoid the search procedure to access all subsets.
Second, each rule should reside in exact one subset. A less
efficient partitioning technique may incur replicated rules to
result in extra storage. Third, the number of rule subsets should
be adjustable to accommodate different rule databases. In the
following, we investigate the current techniques for partitioning a
rule database.

The idea of tuple space divides a rule database into tuples
based on the number of bits specified in each field. Each tuple
corresponds to a prefix-length combination of all inspected fields,
and the resulting set of tuples is called tuple space [1]. For
example, a five-dimensional tuple, (8,16,7,0,8), collects the rules
whose first field is an 8-bit prefix and the second field is a 16-bit
prefix and so on. Since each rule has only one prefix-length
combination, tuple space does not incur any rule replication.
However, a prefix-length combination does not imply any
geometric relations, tuple space cannot meet our first
requirement. It is also difficult to adjusting the number of tuples
due to the high cost of prefix expansion. A similar idea of tuple
space is proposed by using the nested-level tuple, where the
length of each field is defined as the number of nested levels for
the corresponding prefix. Although the number of nested-level
tuples is significantly less than the number of tuples, the first
requirement is still not supported. A greedy approach is proposed
to reduce the number of nested level tuples by using the
technique of cross-producting, but the problem of rule replication
remains. Nested-level tuples also do not support updates since
inserting a rule with a new prefix can change the nested levels of
all rules.

The decision-tree algorithms can divide a database into
subsets by using field attributes of a rule. When the attribute used
for partitioning a database is the field values, decision tree
provides a geometrical approach that the rules in the same subset
are close to each other. As a result, only one subset of a decision
tree is accessed while performing packet classification. The
number of subsets can be controlled by adjusting the number of
rules in a leaf node. However, rule replication is a persistent
problem of a decision tree. Since wildcard specification is

common in a rule database, a geometrical approach to partition a
rule database can only minimize the replicated rules, rather than
avoid rule replication. In the previous work, several approaches
to minimizing replicated rules are proposed [8]. Several
algorithms use multiple decision trees to improve the efficiency
of rule partitioning [9]. The other algorithms exploit different
attributes for partitioning a rule set. None of these approaches can
completely avoid the problem of rule replication with a
reasonable cost.

As compared with tuple-based partitioning approaches, rule
replication is only one problem to overcome for using decision
tree to partition a rule database. We use an on-demand approach
to avoid the problem of rule replication. Our approach first
generates a balanced binary decision tree where each internal
node divides the associated rules into two subsets. In the
procedure of constructing a decision tree, any replicated rules are
removed. All rules which are removed from the first decision tree
are then stored in the second decision tree. The second decision
tree is then constructed based on the above procedure. Any
replicated rules in the second decision tree are then moved to the
third decision tree, and so on. After generating all decision trees,
the rules in a leaf node are inserted into an RFC data structure.
Thus, the number of RFC data structures is equal to the total
number of leaf nodes in all decision trees.

The detailed procedure of rule partitioning is described below.
We first define a bucket size to limit the number of rules stored in
an RFC data structure. All rules are associated with the root node
of the first decision tree. If the number of rules is larger than the
bucket size, then the rules are divided into two subsets. To
partition a rule set, we select a field which can effectively
distinguish these rules. We calculate the number of distinct
prefixes of each field for the rule set and choose the field with the
largest number for rule partitioning. For the selected field, we
further determine an address point which can equally divide the
rule set into two parts. We calculate the number of rules whose
end points of the selected field are less than or equal to a given
address point and number of rules whose starting points of the
selected field are larger than the given address point for each end
point. The end point whose numbers are the closest is selected.
With the selected address point, we can divide the rule set into
three subsets: the rules whose ranges are lower than the selected
address point, the rules whose ranges are higher than the selected
address point, and the uncategorized rules whose ranges are
across the selected address point. The first two sets can be further
divided until each generated subset has less number of rules than
the bucket size by repeating the above steps. All uncategorized
rules in the decision tree are inserted into the root node of the
next decision tree for further partitioning.

We illustrate the above procedure by using an example with
seventeen five-field rules, as listed in Table II. We set the bucket
size to four. In the first iteration of rule partitioning, there are the
most distinct prefixes in source address field; thus, we select this
field to partition the rules into three subsets, where each subset
corresponds to a node of the tree. As shown in Fig. 2, the left
child of the root node stores the rules whose source address field
is lower than the selected address, and the right child of the root
node stores the rules with larger source address field. The middle
child of root node stores the uncategorized rules. Because both
left and right child nodes have more than four rules, they should
be further partitioned to generate smaller subsets. All the
uncategorized rules in the decision tree (including R15, R16,
R12, and R13) are removed to the second decision tree. Due to
the size of the subset corresponding to the root node is not larger
than the threshold, the second decision tree only has one node.

749

TABLE II. THE FIVE FIELD RULE-DATABASE.

 Source address Destination address Source port Destination port Protocol
R0 100.100.198.45/32 128.17.88.0/24 [0:1024] [80:80] 0x06/0xFF
R1 69.250.70.0/32 255.255.255.255/32 [151:151] [81:81] 0x06/0xFF
R2 128.23.128.0/24 128.17.88.0/23 [80:80] [150:160] 0x07/0xFF
R3 32.9.136.0/25 200.16.14.0/24 [79:~80] [80:80] 0x01/0xFF
R4 88.79.0.0/13 192.192.69.69/32 [514:514] [36:136] 0x06/0xFF
R5 200.55.0.0/13 128.17.88.0/24 [2435:2436] [55444:55444] 0x03/0xFF
R6 64.63.0.0/16 128.17.88.0/24 [0:1024] [0:65535] 0x00/0x00
R7 128.128.0.0/16 0.0.255.255/32 [5000:6000] 100 ~ 100 0x07/0xFF
R8 100.100.0.0/16 79.0.0.0/8 [514:514] [120:120] 0x06/0xFF
R9 5.64.0.0/10 32.0.128.0/10 [35543:65535] [83:83] 0x00/0x00
R10 224.145.0.0/9 0.0.0.8/32 [80:80] [0:1024] 0x03/

0xFF
R11 130.87.0.0/10 64.64.90.0/18 [3680:6887] [0:1024] 0x03/0xFF
R12 128.34.0.0/24 0.0.0.0/0 [1025:1025] [1221:1228] 0x03/0xFF
R13 254.80.0.0/16 0.0.0.0/0 [1025:1025] [55444:55666] 0x08/0xFF
R14 254.80.0.0/16 180.37.0.0/16 [17:30] [55222:55333] 0x08/0xFF
R15 0.0.0.0/0 128.128.64.0/24 [98:98] [135:135] 0x00/0xFF
R16 0.0.0.0/0 0.0.0.0/0 [0:65535] [0:65535] 0x00/0x00

Figure 2 The decision trees for the example in Table 2.

After partitioning a rule-database into several subsets, the
rules of a subset is stored in an RFC data structure and use an
index rule to represent the space of a subset. Each range of the
index rule starts from the smallest starting point to the largest end
point of the corresponding field of all rules in the subset.
Therefore, if we partition a rule-database into k subsets, we create
k index rules. Table III lists the index rules and their
corresponding ranges in each field for the previous example in
Table II. After creating the index rules for all subsets, we use an
RFC data structure to store these index rules, called index RFC.

For each RFC data structure, five filter fields are split into
seven chunks, including six 16-bit chunks and one 8-bit chunk in
the first phase. For each chunk, a 2W-entry index array is
constructed for accessing the equivalence class ID (eqID)
corresponding to the value of a packet header field, where w
denotes the chunk size. Each eqID is associated with a class
bitmap to indicate the rules matching the chunk equivalence set.
Each class bitmap of an eqID is different. Two or three chunks
are combined to generate a chunk in the next phase by cross-
producting their eqIDs. The class bitmap of a new chunk is equal
to the intersection of the class bitmaps of the merged eqIDs. Each
distinct class bitmap represents an equivalence set in the new
phase. Each equivalence set is then assigned an eqID. The new
eqIDs are stored in an index array whose size is equal to the
multiplication of the number of merged eqIDs. The procedure
proceeds until all chunks are merged. For an incoming packet, the
search procedure in an RFC data structure starts by splitting the
packet header into seven chunks. The value of each chunk is used
to access the eqID in the index array. If there is any subsequent
phase, then the search procedure uses the combination of the
fetched eqID to generate the index of the next phase. As the

procedure traverses to the last phase and fetches the eqID, the
class bitmap corresponding to the eqID is accessed to determine
the matching rules.

For an incoming packet, the complete search procedure starts
by traversing the index RFC data structure to find the matching
index rules. Then, the search procedure proceeds to search the
subsets of the matching index rules by accessing the
corresponding RFC data structures. The framework of our
algorithm consists of six RFC data structures, five for the resulted
subsets and one for the index rules. Table IV shows the cross-
producting table entries in each phase for the original RFC and
our algorithm. In this example, we reduce 63% entries of the
original RFC.

TABLE III. THE INDEX RULES FOR THE RULES IN TABLE II.

 Source address Destination
address Source port Destination

port Protocol

Index
Rule 0

[5.64.0.0:
64.63.255.255]

[32.0.0.0:
200.16.14.255] [0:65535] [0:65535] [0:255]

Index
Rule 1

[69.250.70.0:
100.100.255.255]

[79.0.0.0:
255.255.99.191] [36:136] [0:1024] [6:6]

Index
Rule 2

[128.128.0.0:
225.16.255.255]

[0.0.0.8:
64.64.153.255] [80:6887] [0:1024] [3:7]

Index
Rule 3

[128.23.128.0:
254.80.255.255]

[128.17.88.0:
180.37.255.255] [17:2436] [150:55444] [3:8]

Index
Rule 4

[0.0.0.0:
255.255.255.255]

[0.0.0.0:
255.255.255.255] [0:65535] [0:65535] [0:255]

TABLE IV. THE CROSS-PRODUCTING TABLE ENTRIES IN EACH PHASE FOR THE
ORIGINAL RFC AND OUR ALGORITHM.

III. REFINEMENTS
In this section, we present three techniques to further improve

both speed and storage performance.

A. Merging Small Subsets
While partitioning a rule database, small subsets could be

generated. These small subsets would result in less efficient RFC
data structure. Extra memory accesses to these data structures are
also incurred. To avoid generating small rule subsets, we merge
the subsets whose numbers of rules are smaller than a threshold.
These rules of the merged groups are thus stored in the same RFC
data structure.

B. Merging the First Phases of Different RFCs
As mentioned above, we need k+1 RFC data structures for a

database partitioned into k groups. Since each of RFC data
structure is traversed independently, we need 7*(k+1) memory
accesses to retrieve eqIDs in the index arrays of the first phase.
To reduce the number of memory accesses, we merge the index
arrays of the same chunk from different RFC data structures,
where each entry in the new array has k+1 fields. Each field maps
to one eqID of different RFCs. Accordingly, we can fetch the
eqIDs of the same chunk in different RFC data structures with
one memory access. The number of memory accesses is thus
reduced from 7*(k+1) to seven for the first phase of all RFCs.

The first phase of each RFC data structure stores eqIDs for six
16-bit chunks and one 8-bit chunk. The lookup table of each 16-
bit chunk is a 216-entry index array and that for the 8-bit chunk is
a 28-entry index array. If we partition a database into k subsets,

SA

SA DA

750

we will need 6 216 (k+1)+28 (k+1) array entries in the first
phase. In order to reduce the memory consumption, we replace
the index array with a binary-search array for the first-phase
eqIDs. For each index array, the eqIDs stored in contiguous
entries could be the same. We can merge them into an interval,
which starts from the first entry to the last entry with the same
eqID. In this way, we can transform a 2w-entry index array into an
n-interval array, which can be binary searched. This approach can
reduce memory consumption in the first phase. We note that we
have merged the first phase of k+1 RFC data structures; therefore,
the prerequisite for merging contiguous entries into one interval
is modified from “with the same eqID” to “with the same (k+1)
eqIDs”.

IV. EXPERIMENTAL RESULTS
In this section, we use both real and synthetic filter databases

to evaluate the performance of the proposed scheme. We use
three types rule sets in our experiment: access control list (ACL),
firewall (FW) and IP chains (IPC). All the databases are publicly
available in [14]. We also compare the proposed scheme with
several existing schemes.

The experimental result consist of three parts, the first part
shows the tradeoff between speed and storage performance with
different subset size. The second part demonstrates the
performance improvement based on various threshold values for
subset merging. The last part is a performance study that
compares our scheme with the existing schemes.

A. Different Subset Size
For the first part, the number of rules in a subset is determined

by using a divisor. With the defined divisor d1, the subset size is
equal to the total number of rules divided by d1. A rule set is
partitioned until the number of rules in each subset is less than the
threshold value. We use three divisors, 4, 8, and 16, in the
following evaluation and choose the one with the best
performance.

Fig. 3 shows the memory requirement and the numbers of
memory accesses in the worst case for three different types of
databases with three different subset sizes. As shown in Fig. 3(a),
the memory requirements degrade gradually along with a smaller
subset size and a small group size usually leads to low memory
requirement for cross-producting tables. However, Fig. 3(b) also
shows that with more subsets generated, more memory accesses
are needed to accomplish a classification. This is because an
incoming packet may match multiple index rules in the index
RFC and the corresponding RFC data structures must be
accessed. After comparing these group sizes, we set the group
divisor d1 to 8 since it can better leverage the storage and speed
performance. The subset size is thus equal to the number of rules
divided by 8.

After partitioning a database into several subsets, the subsets
with few rules may decrease the overall search performance since
their RFC data structures store relatively few rules. In addition,
extra memory accesses might be incurred if an incoming packet
matches these subsets.

B. Different Threshold Values for Subset Merging
In the second part, we set a threshold to improve the

performance by merging the small subsets. The merge threshold
is also determined by using a divisor d2, where the merge
threshold is equal to the subset size divided by d2. The subsets are
merged if their sizes are smaller than the merge threshold. We
use three divisor values, 2, 3, and 4, in the following evaluation
and choose the one with the best performance.

Fig. 4 shows the memory requirement and the number of

memory accesses in the worst case for three types of databases
with three different thresholds for subsets merging. Fig. 4(a)
shows that a large threshold may incur more memory
requirements since more subsets are merged to result in larger
cross-producting tables in RFC. Fig. 4(b) shows that a small
merge threshold may incur more memory accesses for several
databases because the number of RFC data structures cannot be
effectively reduced. As a result, an incoming packet may match
more subsets to lead to more memory accesses in the search
procedure.

We further compare the performance of our scheme with and
without subset merging by setting the divisor d2 to 3. Fig.5(a)
shows that the memory requirements increase slightly with subset
merging since an RFC data structure storing more rules usually
results in more cross-producting entries. Fig. 5(b) shows that
subset merging can reduce the number of memory accesses.
Although the tradeoff between storage and speed performance is
present, the speed improvement is preferable since our algorithm
has significantly reduced memory requirement of RFC.

C. Comparative analysis
In the last part, we compare the performance of our optimized
scheme with four existing schemes, including RFC [2], HSM [3],
Hypercuts [8] and ISET [13]. We also use three types of rule sets
in the comparisons, as shown in Fig. 6~8. Some results cannot be
generated because the programs for building data structures ran

Figure 3(a). Storage performance for three databases in three kinds of
thresholds.

Figure 3(b). Speed performance for three databases in three kinds of thresholds.

1

10

100

1000

10000

100000

M
em

or
y

(K
B

)

4 8 16

0

10

20

30

40

50

60

N
um

be
r

of
 M

em
or

y
A

cc
es

se
s 4 8 16

751

Figure 4(a). Storage performance for three databases in three merge thresholds.

Figure 4(b). Speed performance for three databases in three merge thresholds.

Figure 5(a). Storage performance of our scheme with and without group
merging.

Figure 5(b). Speed performance of our scheme with and without group merging.

Figure 6(a). Storage performances of five schemes with ACL1 databases.

Figure 6(b). Speed performance of five schemes with ACL1 databases.

out of memory. Fig. 6(a), 7(a) and 8(a) show the comparisons of
memory requirements with five schemes. Our scheme greatly
improves the storage performance of both RFC and HSM since
they use similar data structures. The memory requirement of our
proposed scheme is larger than that of ISET since ISET heavily
relies on linear search in their data significantly worse than our
scheme. However, the speed performance of ISET is also
significantly worse than our scheme. The results of Hypercuts
vary for different databases. While Hypercuts performs well for
ACL, its performance degrades severely for FW and IPC
databases. These databases result in heavy filter replication
structures. As a result, both storage and speed performance is

worsened simultaneously. For FW and IPC databases, our
scheme outperforms Hypercuts for both speed and storage
performance. In summary, our scheme shows the best feasibility
among these schemes. Although it may not be the best scheme
for a single performance metric, it always provides consistent
throughput and avoids the worst case performance.

V. CONCLUSIONS
Packet classification is an important technique for the future
Internet. In this paper, we proposed an effective algorithm based
on RFC. RFC can classifies packets within few memory
accesses. However, the main drawback of RFC is that it may

1

10

100

1000

10000

100000

M
em

or
y

(K
B

)
(8,2) (8,3) (8,4)

0

5

10

15

20

25

30

35

40

45

N
um

be
r

of
 M

em
or

y
A

cc
es

se
s

(8,2) (8,3) (8,4)

1

10

100

1000

10000

100000

M
em

or
y

(K
B

)

without refinement
with merging refinement

0

5

10

15

20

25

30

35

40

45

N
um

be
r

of
 M

em
or

y
A

cc
es

se
s without refinement

with merging refinement

1

10

100

1000

10000

100000

ACL1 ACL1_100 ACL1_1K ACL1_5K ACL1_10K

M
em

or
y

(K
B

)

ISET HyperCuts RFC HSM Our Scheme

0

20

40

60

80

100

120

140

ACL1_REAL ACL1_100 ACL1_1K ACL1_5K ACL1_10K

N
um

be
r

of
 M

em
or

y
A

cc
es

se
s

ISET HyperCuts RFC HSM Our Scheme

752

Figure 7(a). Storage performances of five schemes with FW1 database.

Figure 7(b). Speed performance of five schemes with FW1 databases.

Figure 8(a). Storage performances for five schemes with IPC1 database.

Figure 8(b). Speed performances for five schemes with IPC1 database.

incur high memory consumption in generating the cross-product
tables. Owing to this drawback, RFC is not feasible for large
databases. To improve the storage performance, we design a
algorithm to partition the rule database into several subsets
geometrically. Each rule in a subset is stored in an RFC data
structure and each subset is represented by an index rule. All
index rules are stored in an index RFC for pointing to the
corresponding RFC data structure. By traversing these RFC data
structures recursively, the highest priority matching rule for an
incoming packet can be yielded. We further merge the index
arrays of the same chunk in the first phase to reduce memory
accesses. We also transform the index arrays for binary searches
to improve the storage performance. We use three types of rule
sets to evaluate the performance, including access control list,
firewall and IP chains. The results show that our scheme can
significantly reduce the memory requirement as compared with
RFC. It also leverages the performance of storage and speed to
avoid extreme cases of the existing schemes.

REFERENCES
[1] V. Srinivasan, S. Suri, and G. Varghese, "Packet Classification Using

Tuple Space Search," SIGCOMM Comput. Commun. Rev., vol. 29, no. 4,
pp. 135-146, 1999.

[2] P. Gupta and N. McKeown, "Packet Classification on Multiple Fields,"
SIGCOMM Comput. Commun. Rev., vol. 29, no. 4, pp. 147-160, 1999.

[3] X. Bo, J. Dongyi, and L. Jun, "HSM: A Fast Packet Classification
Algorithm," in Proceedings of AINA 2005, pp. 987-992, 2005.

[4] M. Zhang and G. Li, " Research on Packet Classification based on
improved cross-product method," Procedia Engineering, vol. 24, no. 1, pp.
232-236, 2011.

[5] L. Choi, H. Kim, S. Kim, and M. H. Kim, "Scalable Packet Classification
Through Rulebase Partitioning Using the Maximum Entropy Hashing,"
IEEE/ACM Trans. Netw., vol. 17, no. 6, pp. 1926-1935, 2009.

[6] P. Fong and T. Nian-Feng, "HaRP: Rapid Packet Classification via
Hashing Round-Down Prefixes," IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 7, pp. 1105-1119, 2011.

[7] P. Gupta and N. McKeown, "Packet classi�cation using hierarchical
intelligent cuttings," in Proceedings of Hot Interconnects VII, pp. 34-41,
1999.

[8] S. Singh, F. Baboescu, G. Varghese, and J. Wang, "Packet classification
using multidimensional cutting," in Proceedings of ACM SIGCOMM, pp.
213-224, 2003.

[9] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar, "EffiCuts: Optimizing
Packet Classification for Memory and Throughput," SIGCOMM Comput.
Commun. Rev., vol. 41, no. 4, pp. 207-218, 2010.

[10] Y.-K. Chang, "Efficient Multidimensional Packet Classification with Fast
Updates," IEEE Transactions on Computers, vol. 58, no. 4, pp. 463-479,
2009.

[11] Y.-K. Chang, I. L. Chun, and S. Cheng-Chien, "Multi-field Range
Encoding for Packet Classification in TCAM," in Proceedings of IEEE
INFOCOM, pp. 196-200, 2011.

[12] A. Bremler-Barr and D. Hendler, "Space-Efficient TCAM-Based
Classification Using Gray Coding," IEEE Transactions on Computers, vol.
61, no. 1, pp. 18-30, 2012.

[13] X. Sun, S. K. Sahni, and Y. Q. Zhao, "Packet Classification Consuming
Small Amount of Memory," IEEE/ACM Trans. Netw., vol. 13, no. 5, pp.
1135-1145, 2005.

[14] http://www.arl.wustl.edu/~hs1/PClassEval.html

1

10

100

1000

10000

100000

FW1 FW1_100 FW1_1K FW1_5K FW1_10K

M
em

or
y

(K
B

)

ISET HyperCuts RFC
HSM Our Scheme

0

20

40

60

80

100

120

140

160

180

FW1 FW1_100 FW1_1K FW1_5K FW1_10K

N
um

be
r

of
 M

em
or

y
A

cc
es

se
s

ISET HyperCuts RFC HSM Our Scheme

1

10

100

1000

10000

100000

IPC1_REAL IPC1_100 IPC1_1K IPC1_5K

M
em

or
y

(K
B

)

ISET HyperCuts RFC
HSM Our Scheme

1

10

100

1000

IPC1_REAL IPC1_100 IPC1_1K IPC1_5K

N
um

be
r

of
 M

em
or

y
A

cc
es

se
s

ISET HyperCuts RFC HSM Our Scheme

753

